Tutorial Course Descriptions

Detailed Syllabus

C-329 Properties and Applications of Tribological and Decorative Coatings

Understanding the factors that control friction and wear are of vital industrial and economic importance. The function, reliability, and lifetime of many mechanical, electromechanical and even biological systems are impacted by the complex relationships between materials, surfaces, design, and the environments that they are exposed to. Increasing complexity and performance requirements that are driven by economics, and a heightened awareness of health and safety issues with traditional chemical plating processes offers new opportunities and challenges for novel coatings and advanced surface engineering techniques. This tutorial is intended for engineers, designers, managers and purchasing professionals who have a need to specify, develop and procure coatings for tribological applications (i.e., those applications in which wear must be reduced or prevented and/or friction minimized). These coatings will likely require corrosion-resistant properties to operate in arduous conditions and must also exhibit functional characteristics (color, adhesion scratch resistance, etc.) that span the complete range from industrial to consumer products. The tutorial begins with a description of the mechanics of wear and discusses the criteria for selecting coatings for optimal tribological performance. An overview of the main processes for producing tribological coatings is provided with emphasis on vacuum deposition methods. Tribological test methods also are reviewed, including tests for adhesion and mechanical properties. Finally, coatings developed for enhanced tribological and decorative properties are described and examples of applications are presented.

Topical Outline:

  • Wear mechanisms and theories (adhesion, abrasion, erosion, fatigue, corrosion, etc.)
  • Tribological and mechanical test methods (e.g., pin on disc, abrasive wheel, scratch adhesion, microhardness, etc.)
  • Coating processes and selection
  • Benefits of ceramic coatings by PVD methods
  • Information on tribological coatings (e.g., metal nitrides, carbides, oxides, superlattices, multilayers, nanocomposites, DLC, etc., plus hybrid and duplex processes)
  • Applications information (e.g., metal cutting and forming, molding, bearings, pumps, auto parts, etc.)
Course Details:

Understanding the effect of the deposition process is very important for producing high quality tribological films, and this understanding starts with how vacuum plasma processes work. Plasma process fundamentals are presented to give the student a better understanding of the effects of the process parameters on the generation of the sputtered or evaporated species and how the energy of these vaporized species plays an important role in the nucleation and growth of the deposited films. Important vacuum tribological coating processes such as triode electron beam evaporation, sputtering, reactive sputtering, and cathodic arc deposition are reviewed, and similarities and differences in the processes are discussed with the goal of giving the student a better understanding of where to use one process over another. All successful tribological coating processes today use ion- or plasma-assisted deposition, so the basics of plasma effects are  reviewed.

Once a tribological coating is deposited, it is important to be able to determine that a good coating has been produced. Common characterization tests for hardness and adhesion are presented, and the advantages and disadvantages are discussed. For example, the scratch adhesion test is routinely used to test the adhesion of a hard coating on a hard substrate. However one must be aware that the results from this test depend on many factors such as coating thickness and hardness, substrate hardness, and the condition of the test instrument. There are many tests for measuring the wear resistance of the coatings such as the pin-on-disc or abrasive wheel tests, and the pros and cons of these different tests are reviewed.

Common tribological coatings in use today are metal nitrides, carbides, oxides, and diamond like carbon (DLC) films. These different coatings can be deposited as single layer films, or they can be deposited as multi-layer  coatings. DLC films cover a wide variety of coatings that are carbon based, but which may include the incorporation of hydrogen or nitrogen to enhance their properties. Coatings can also be produced as nanocomposite compound films. These can be carbon-based or may (for example) contain ceramic/ceramic, ceramic/metal or metal/metal combinations. The use of nano-layered and nanocomposite coatings allows the mechanical properties to be tailored to optimize both hardness (H) and elastic modulus (E)- to obtain a high H/E ratio, and thereby ensure that the coating can accommodate substrate deformations without yielding.

Depositing a coating is thus only part of the solution for a well performing tribological coating. How the coating interacts with the substrate is an important part of the equation, and how the substrate supports the coating is equally important. Surface engineering where both the coating and the substrate are designed to work together to provide an enhanced performance that neither is capable of producing by itself is the basic building block for a successful tribological coating.

Many tribological coatings applications are discussed to give the student an awareness of the many successful applications for the different coatings. Coatings for metal cutting and forming, molding, bearings, pumps, and automotive parts are but a few of the successful applications in production today.

Instructor: Dr. Allan Matthews, Professor of Surface Engineering and Tribology, The University of Manchester - United Kingdom
Dr. Allan Matthews

Allan Matthews is a Fellow of the Royal Academy of Engineering and is Professor of Surface Engineering and Tribology in the School of Materials at the University of Manchester, UK. He is also Director of the BP-sponsored International Centre for Advanced Materials (ICAM). He spent his early career in the aerospace industry and carried out research into ion plating processes at the University of Salford before moving to the University of Hull, where he built up the Research Centre in Surface Engineering as Director for over 20 years. He moved the Centre to the University of Sheffield in 2003 and then to Manchester in 2016. His group researches plasma assisted processes, mostly for tribological coatings and diffusion treatments. He is Editor-in-Chief of the Elsevier journal Surface and Coatings Technology, a former member of the SVC Board of Directors and a former Chair of the British Vacuum Council and the AVS Advanced Surface Engineering Division Executive Committee.

Instructor: Dr. Gary Doll, Timken Professor of Surface Engineering, University of Akron - Akron, OH
Dr. Gary Doll

Gary Doll is the Timken Professor of Surface Engineering at the University of Akron. Prior to joining the University of Akron, Dr. Doll was the Chief Technologist of Tribology at the Timken Company, and Staff Scientist of Physics for General Motors Research Laboratories. Dr. Doll was elected as an ASM Fellow in 2009, and as an STLE Fellow in 2016 for his contributions to the field of Surface Engineering. He is a member of the SVC, STLE, ASME, and the ASM International organizations, and is an associate editor for Tribology Transactions. In 2016, he was awarded a Distinguished Fellowship by the Royal Academy of Engineering. Over his career, Dr. Doll has published over 300 articles and book chapters, edited numerous proceedings, and received more than 25 US Patents.

This course is currently available via:
On Location Education Program

Contact Us | Member Login  | Use and Privacy Policy | Forum Terms of Use
© Copyright 2006-2023, Society of Vacuum Coaters (SVC™)
All Rights Reserved
Follow SVC on Twitter Follow SVC on Instagram Follow SVC on LinkedIn Follow SVC on YouTube Society of Vacuum Coaters
P.O. Box 10628
Albuquerque, NM 87184
Phone 505/897-7743
Fax 866/577-2407