Tutorial Course Descriptions

Detailed Syllabus


This course is intended for people with a basic background in materials science who need to understand the broad range of techniques available to characterize thick films, thin films, and surfaces. The course is appropriate for technicians, engineers, and managers who perform or specify characterization work as well as students seeking a broad understanding of the field. The tutorial examines a broad range of important properties of discusses how film thickness may cause measured values/performance to differ from bulk properties. Generic differences between counting and spectroscopic techniques are presented and available “probes” are identified.


Topical Outline:
  • HIPIMS - An Introduction
  • Stationary plasmas, sheaths, discharge
  • The dc magnetron processes
  • Ion surface modification: etching and film growth, energetic condensation
  • Pulsed plasmas and sheaths
  • High Power Impulse Magnetron Sputtering: the discharge
  • Plasma characterization and plasma diagnostics
  • Substrate biasing: etching / growth assist
  • Interface engineering by using HIPIMS plasmas
  • Deposition and coatings by HIPIMS
  • Hardware
  • Applications
Course Details:

This tutorial is intended for engineers, technicians, students, and others interested in using pulsed plasmas for deposition in general, and high power impulse magnetron sputtering (HIPIMS) in particular. Some basic understanding or experience with plasmas and materials is desirable but not required.

The tutorial starts with an introduction to basic plasma and sheath physics, as it is relevant to coatings and films. We will explain the operation and physical processes of DC magnetrons to provide the foundation for the understanding of the time-dependent processes in pulsed systems. To appreciate the effects of pulsed plasmas on coatings, we provide a brief overview on film growth modes and the effects obtained by ion bombardment. Attention will also be paid to substrate surface modification by very energetic ions (etching) where sputtering and shallow ion implantation occur. The world of pulsed plasma processing is introduced by considering the effects of pulsing on the plasma and sheath.

Equipped with these basics, we move on to the central topic of this tutorial, high power impulse magnetron sputtering (HIPIMS). With HIPIMS we mean a pulsed sputtering process where the power density on the sputtering target is greatly enhanced (about two orders of magnitude) over the average power density. Hence, the word “impulse” is adopted to signify a low duty cycle. We will explain how the time-dependent HIPIMS discharge differs from conventional magnetron discharges.

Based on various plasma diagnostics techniques, the HIPIMS plasma is characterized and compared to plasmas of other magnetron and arc discharges. The high degree of ionization of the sputtered material enables effective surface modification via ion etching and ion assistance to film growth. The interface to the substrate can be engineered and the film texture can be influenced using the HIPIMS plasma and appropriate bias.

The tutorial is concluded by considering various available hardware (power supplies etc.) and industrial applications such as tool coatings.

Instructor: Arutiun P. Ehiasarian, Sheffield Hallam University, United Kingdom
Arutiun P. Ehiasarian

joined the Nanotechnology Centre for PVD Research at Sheffield Hallam University, UK in 1998 where he obtained his PhD in Plasma Science and Surface Engineering. His research within NTCPVD has concentrated on development of plasma PVD technologies for substrate pretreatment prior to coating deposition to improve adhesion, deposition of coatings with dense microstructure, low-pressure plasma nitriding and hybrid processes of plasma nitriding/coating deposition. He has experience with cathodic vacuum arc discharges, dc and pulsed magnetron discharges, and radio-frequency coil enhanced magnetron sputtering. He utilizes plasma diagnostics such as optical emission spectroscopy (OES), electrostatic probes, energy-resolved mass spectroscopy and atomic absorption spectroscopy. Materials characterization includes high-resolution TEM, STEM, STEM-EDS, SEM, and XRD as well as mechanical testing available at NTCPVD. Arutiun is one of the pioneers of high power impulse magnetron sputtering (HIPIMS) technology and his work in the field has been acknowledged with the R.F. Bunshah Award (2002), the TecVac Prize (2002) and the Hüttinger Industrial Accolade. In 2011 he received the AVS Peter Mark Memorial Award as a top young investigator, and in  2012 he received the SVC Mentor Award. He is an author of more than 50 publications, 10 invited lectures, 3 patents and 1 book chapter in the field of PVD and HIPIMS.

This course is currently available via:
On Location Education Program

Contact Us | Member Login  | Use and Privacy Policy | Forum Terms of Use
© Copyright 2006-2017, Society of Vacuum Coaters (SVC™)
All Rights Reserved

Follow SVC on Twitter
Society of Vacuum Coaters
P.O. Box 10628
Albuquerque, NM 87184
Phone 505/897-7743
Fax 866/577-2407