Tutorial Course Descriptions

Detailed Syllabus

C-308 Tribological Coatings

This tutorial is intended for design engineers, materials scientists, and coatings developers who have a need to specify and develop coatings for tribological applications (i.e., those in which wear must be reduced or prevented and/or friction minimized). The coatings also may need to have corrosion-resistant properties to operate in arduous conditions. The tutorial begins with a description of the mechanics of wear and discusses the problems of selecting coatings for optimal tribological performance. An overview of the main processes for producing tribological coatings is given, emphasizing vacuum deposition methods. Tribological test methods also are over-viewed, including tests for adhesion and mechanical properties. Coatings developed for enhanced tribological properties are described, and information is provided on some applications for these coatings.


Topical Outline:
  • Wear mechanisms and theories (adhesion, abrasion, erosion, fatigue, corrosion, etc.)
  • Tribological and mechanical test methods (e.g., pin on disc, abrasive wheel, scratch adhesion, microhardness, etc.)
  • Coating processes and selection
  • Benefits of ceramic coatings by PVD methods
  • Information on tribological coatings (e.g., metal nitrides, carbides, oxides, superlattices, multilayers, nanocomposites, DLC, etc., plus hybrid and duplex processes)
  • Applications information (e.g., metal cutting and forming, molding, bearings, pumps, auto parts, etc.)
Course Details:

Understanding the effect of the deposition process is very important for producing high quality tribological films, and this understanding starts with how vacuum plasma processes work. Plasma process fundamentals are presented to give the student a better understanding of the effects of the process parameters on the generation of the sputtered or evaporated species and how the energy of these vaporized species plays an important role in the nucleation and growth of the deposited films. Important vacuum tribological coating processes such as triode electron beam evaporation, sputtering, reactive sputtering, and cathodic arc deposition are reviewed in detail, and similarities and differences in the processes are discussed with the goal of giving the student a better understanding of where to use one process over another. All successful tribological coating processes today use ion-assisted deposition (IAD), and how IAD works with the different deposition techniques is reviewed.

Once a tribological coating is deposited, it is important to be able to determine that a good coating has been produced. Common characterization tests for hardness and adhesion are presented, and the advantages and disadvantages are discussed. For example, the scratch adhesion test is routinely used to test the adhesion of a hard coating on a hard substrate. However one must be aware that the results from this test depend on many factors such as coating thickness and hardness, substrate hardness, and the condition of the test instrument. There are many tests for measuring the wear resistance of the coatings such as the pin-on-disc or abrasive wheel tests, and the pros and cons of these different tests are reviewed.

Common tribological coatings in use today are metal nitrides, carbides, oxides, and diamond like carbon (DLC) films. These different coatings can be deposited as single layer films, or they can be deposited as multi-layer or superlattice coatings. DLC films cover a wide variety of coatings that are carbon based, but which may include the incorporation of hydrogen or nitrogen to enhance their properties. Coatings can also be produced as nanocomposite compound films. These can be carbon-based or may (for example) contain ceramic/ceramic, ceramic/metal or metal/metal combinations. The use of nano-layered and nanocomposite coatings allows the mechanical properties to be tailored to optimize both hardness (H) and elastic modulus (E)- to obtain a high H/E ratio, and thereby ensure that the coating can accommodate substrate deformations without yielding.

Depositing a coating is thus only part of the solution for a well performing tribological coating. How the coating interacts with the substrate is an important part of the equation, and how the substrate supports the coating is equally important. Surface engineering where both the coating and the substrate are designed to work together to provide an enhanced performance that neither is capable of producing by itself is the basic building block for a successful tribological coating.

Many tribological coatings applications are discussed to give the student an awareness of the many successful applications for the different coatings. Coatings for metal cutting and forming, molding, bearings, pumps, and automotive parts are but a few of the successful applications in production today.

Instructor: Allan Matthews, The University of Manchester - United Kingdom
Allan Matthews

is Professor of Surface Engineering in the Department of Materials Science and Engineering at the University of Sheffield, UK. He is Executive Director of the Leonardo Centre for Tribology and Surface Technology and Director of the Research Centre in Surface Engineering. He has been working on plasma-assisted PVD processes for over 30 years. He spent his early career in the aerospace industry and subsequently carried out research into enhanced plasma-based coating and treatment processes as well as test and evaluation methods. He holds eight patents in these fields and has authored or co-authored over 330 publications, including the book, Coatings Tribology (Elsevier, 2009). He is an SVC Board Member and a former Chair of the Executive Committee of the Advanced Surface Engineering Division of the AVS. He is a former Chair, Symposium Committee member and Proceedings Editor for the ICMCTF Conference. He a past Chair of the British Vacuum Council and a Co-Editor of the Elsevier journal, Surface and Coatings Technology. He is a Fellow of the Royal Academy of Engineering.

Instructor: Bill Sproul, Reactive Sputtering, Inc. and Gencoa Ltd.
Bill Sproul

is the founder and owner of Reactive Sputtering, Inc. Prior to starting his own company, he worked at Advanced Energy Industries, the Borg-Warner Corporation, Northwestern University, and Sputtered Films, Inc. Throughout his career he has been involved with the sputter deposition and reactive sputter deposition of hard materials for wear and corrosion applications. He is the author or co-author of more than 175 technical papers. He has 11 patents to his credit, and he is the inventor of the high rate reactive sputtering process. He is a past president of the American Vacuum Society, and he chaired the International Conference on Metallurgical Coating and Thin Films (ICMCTF) three times.  He also served on the SVC Board of Directors.  He is an AVS Fellow and Honorary Member, and in 2003 he received the SVC Mentor Award and the AVS Thornton Award.  In 2011 he was awarded the SVC Nathaniel H. Sugerman Memorial Award.



This course is currently available via:
On Location Education Program

Contact Us | Member Login  | Use and Privacy Policy | Forum Terms of Use
© Copyright 2006-2017, Society of Vacuum Coaters (SVC™)
All Rights Reserved

Follow SVC on Twitter
Society of Vacuum Coaters
P.O. Box 10628
Albuquerque, NM 87184
Phone 505/897-7743
Fax 866/577-2407